Расчет подъемной силы крыла самолета

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По  своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако  область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции. 

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи. 

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

А зачем же нужно увеличивать подъемную силу? Вообще требуется не столько увеличение подъемной силы, сколько уменьшение скорости самолета, по крайней мере в гражданской авиации. А поскольку эти две величины непосредственно связаны, потому и происходит одно за счет другого.

Уменьшение скорости необходимо при взлете и посадке для обеспечения большей безопасности и уменьшения длины взлетной полосы. Кроме того, боевым самолетам довольно часто при выполнении того или иного маневра необходимо очень быстро увеличить либо уменьшить подъемную силу, для чего и служит механизация крыла.

Проектирование нервюр с помощью AutoСAD

Оказывается, изготовление нервюр для трапециевидного крыла может стать вдохновляющим занятием. Есть несколько методов: первый метод основан на вырезании профиля крыла по трафарету сначала для корневой части, а потом для законцовки крыла. Он заключается в сочленении обоих профилей вместе с помощью болтов и вычерчивании по ним всех остальных. Этот метод особенно хорош для изготовления прямых крыльев. Основное ограничения метода – он подходит только для крыльев с незначительным сужением. Проблемы возникают из-за резкого роста угла между профилями при значительной разнице между хордой законцовки и хордой корня крыла. В этом случае во время сборки могут сложности из-за большого отхода дерева, острых углов и краёв нервюр, которые надо будет удалить. Поэтому я воспользовался своим методом: сделал свои собственные шаблоны для каждой нервюры, а затем обработал их так, чтобы получить идеальную форму крыла. Задача оказалась сложнее, чем я ожидал, поскольку шаблон корневой части отличался от законцовки кардинально, а все профиля между ними были комбинацией двух предыдущих, вместе с кручением и растяжением. В качестве программы проектирования я использовал Autodesk AutoCAD 2012 Student Addition, поскольку съел на этом собаку при моделировании RC моделей самолётов в прошлом. Проектирование нервюр происходит в несколько этапов.

Всё начинается с импорта данных. Самый быстрый способ для импорта аэродинамического профиля (профили можно найти в базах данных UIUC аэродинамических профилей) в AutoCAD, который я нашел, заключается в создании табличного файла в формате excel в виде таблицы с колонками координат точек профиля x и y. Единственное, что следует перепроверить — соответствуют ли первая и последняя точка друг другу: получается ли у вас замкнутый контур. Затем скопировать полученное назад в txt файл и сохранить его. После того, как это проделано, следует вернуться назад и выделить всю информацию на предмет, если вы случайно вставили заголовки. Затем в AutoCAD запускается команда «spline» и «paste» для обозначения первой точки эскиза. Жмем «enter» до конца выполнения процесса. Аэродинамический профиль в основном обрабатывается таким образом, что каждая хорда становится отдельным элементом, это весьма удобно для изменения масштаба и геометрии.

Рисование и взаимное расположение профилей в соответствие плану. Передняя кромка и лонжероны должны быть тщательно доведены до нужного размера, при этом надо помнить про толщину обшивки. На чертеже, следовательно, лонжероны должны быть нарисованы уже, чем они есть на самом деле. Желательно сделать лонжероны и переднюю кромку выше, чем они есть на самом деле, для того, чтобы рисунок лег ровнее. Также пазы на лонжеронах должны быть расположены таким образом, чтобы оставшаяся часть лонжерона уместилась в нервюрах, но осталась при этом квадратной.

На рисунке показаны основные аэродинамические профиля перед тем, как они будут разбиты на промежуточные.

Лонжерон и совместная с ним передняя кромка соединены вместе, чтобы потом их можно было исключить из построения.

Аэродинамические профили сопряжены вместе и образуют форму крыла при видимом лонжероне и передней кромке.

Лонжерон и передняя кромка удалены с помощью операции «subtract», остальные части крыла показаны.

Крыло вытягивается с помощью функции «solidedit» и «shell». Далее выделяются поочередно плоскости корневой части крыла и законцовки, удаляются, а то, что получается и есть обшивка крыла. Поэтому внутренняя часть обшивки крыла является основой для нервюр.

С помощью функции «плоскость сечения» формируются эскизы каждого профиля.

После этого под командой «плоскость сечения» выбирается создание раздела. С помощью этой команды созданные профили во всех точках профиля могут быть отображены. Для помощи в выравнивании нервюр крыльев я строго рекомендую создать на каждом сечении горизонтальную линию от задней кромки крыла до передней. Это позволит правильно выровнять крыло, если оно построено с кручением, а также сделать его прямым.

Поскольку эти шаблоны на самом деле созданы с учетом обшивки крыльев, внутренняя линия профилей является правильной линией для построения нервюр.

Теперь, когда все нервюры промаркированы с помощью команды «text», они готовы к печати. На каждой странице с нервюрами я разместил схематически коробку с площадкой, доступной для печати на принтере. Маленькие нервюры можно печатать на толстой бумаге, а для крупных аэродинамических профилей подойдет обычная бумага, которая затем усиливается перед вырезанием.

Как управляют самолетом

Безусловно, чтобы процесс полета был безопасным и комфортным, одних крыльев и двигателя будет мало

Важно управление многотонной машиной. И очень важна точность руления в процессе взлета и посадки

У пилотов посадка считается контролируемым падением. В ее процессе происходит значительное снижение скорости, и в итоге машина теряет высоту

Важно чтобы скорость была подобрана максимально точно для обеспечения плавности падения. Именно это приводит к тому, чтобы шасси касались полосы мягко

Управление летательным аппаратом в корне отличается от управления наземным транспортным средством. Штурвал нужен, чтобы отклонять машину вверх и вниз, создавать крен. «На себя» означает набирать высоту, а «от себя» означает пикировать. Чтобы менять курс, нужно нажимать на педали, а затем с помощью штурвала корректировать наклон. Этот маневр на языке летчиков называется «разворотом» либо «виражом».

Чтобы машина могла разворачиваться, стабилизировать полет, в хвосте аппарата присутствует вертикальный киль. Над ним расположены «крылья», которые являются горизонтальными стабилизаторами. Именно благодаря им самолет не снижается и не набирает высоту самопроизвольно.

На стабилизаторы помещают рули высоты. Чтобы управление двигателем было возможным, у кресел пилотов поместили рычаги. Когда самолет взлетает, их переводят вперед. Взлетный режим означает максимальную тягу. Он нужен для того, чтобы аппарат набрал взлетную скорость.

Если тяжелая машина садится, рычаги отводятся назад. Это является режимом минимальной тяги.

Можно наблюдать, как перед тем как садиться, задние части больших крыльев опускаются вниз. Они называются закрылками и выполняют ряд задач. Когда самолет снижается, выпущенные закрылки притормаживают машину. Это не позволяет ей разгоняться.

Если самолет садится, а скорость не слишком большая, закрылки выполняют задачу создания дополнительной подъемной силы. Тогда высота теряется достаточно плавно. Когда машина взлетает, закрылки способствуют тому, чтобы самолет держался в воздухе.

Угол атаки

Угол атаки — один из самых важных параметров полета, он представляет собой угол наклона хорды к набегающему потоку. Подъемная сила будет больше, если увеличится угол атаки. Однако при этом возрастет лобовое сопротивление, но мощность двигателя специально рассчитана на то, чтобы его преодолевать.

Если данный угол достигает своего критического значения, потоки воздуха перестают огибать крыло плавно и начинают завихряться. Соответственно, уменьшается скорость потока и увеличивается давление на крыло, это приводит к тому, что подъемная сила резко падает. Данный эффект называют срывом потока.

Механизмы задней кромки крыла

при взлете и посадке самолета, для увеличения площади крыла и изменения его аэродинамических характеристик, применяются щитки и закрылки.

Они представляют собой выдвижные или поворотные плоскости. Обыкновенные щитки просто отклоняются вниз при помощи поворотного механизма. Выдвижные щитки, вначале выдвигаются назад за плоскость крыла, а затем наклоняются вниз. Закрылки подразделяются на обыкновенные и щелевые.

Обыкновенные закрылки тоже просто отклоняются вниз. Обыкновенные щитки и закрылки при отклонениях не имеют зазора между крылом. Щелевые закрылки в рабочем положении образуют зазор между своим корпусом и крылом. За счет этого зазора, области низкого и высокого давления в верхней и нижней поверхности крыла сообщаются между собой. Это способствует равномерному обтеканию крыла воздухом, предотвращает срывы потока и падение подъемной силы.

Выпущенные закрылки (Фаулера) самолета ТУ-154

Щелевые закрылки, так же как и крыло подвергаются скоростному напору воздуха и поэтому имеют аэродинамический профиль.

Они подразделяются на однощелевые и многощелевые. Однощелевые закрылки представляют собой простую однопрофильную конструкцию и просто отклоняются вниз, или выдвигаются назад из крыла, а затем отклоняются вниз.

Многощелевые закрылки имеют сложную многоступенчатую многопрофильную (до 3-х профилей) конструкцию с механизмом выдвижения из крыла. Каждый профиль многоступенчатой конструкции отклоняется на свой угол. При опускании закрылков и щитков изменяется аэродинамика крыла, а при их выдвижении увеличивается его площадь. Все эти действия способствуют увеличению подъемной силы крыла.

Простой (поворотный) закрылок

Стандартная атмосфера

Состояние воздуха, его температура и давление могут существенно различаться на разных участках земной поверхности. Соответственно, будут различаться и все характеристики летательных аппаратов при полете в том или ином месте. Поэтому для удобства и приведения всех характеристик и расчетов к единому знаменателю договорились определить так называемую стандартную атмосферу со следующими основными параметрами: давление 760 мм ртутного столба над уровне моря, плотность воздуха 1,188 кг на кубический метр, скорость звука 340,17 метра в секунду, температура +15 ℃. С увеличением высоты над уровнем моря эти параметры изменяются. Существуют специальные таблицы, раскрывающие значения параметров для разных высот. Все аэродинамические расчеты, а также определение летно-технических характеристик летательных аппаратов осуществляются с использованием этих показателей.

Высота полета самолета

Многих интересует вопрос: какая высота полета авиалайнеров? Надо сказать, что и в этом случае конкретных данных нет. Высота может быть разной. Если же брать средние показатели, то пассажирские лайнеры летают на высоте 5—10 тыс. метров. Крупные пассажирские самолеты летают с большей высотой — 9—13 тыс. метров. Если самолет набирает высоту выше 12 тыс. метров, то он начинает проваливаться. Из-за того, что воздух разреженный, отсутствует нормальная сила подъема и имеется недостаток кислорода. Именно поэтому не стоит взлетать так высоко, поскольку есть угроза авиакатастрофы. Зачастую самолеты выше 9 тыс. метров не поднимаются. Примечательно, что и чересчур низкая высота негативно сказывается на полете. Например, ниже 5 тыс. метров нельзя летать, так как есть угроза недостатка кислорода, в результате чего снижается мощность двигателей.

Элероны и интерцепторы

Кроме тех элементов, что уже были описаны, есть еще те, которые можно отнести к второстепенным. Система механизации крыла включает в себя такие второстепенные детали, как элероны. Работа этих деталей осуществляется дифференциально. Чаще всего используется конструкция такая, что на одном крыле элероны направлены вверх, а на втором они направлены вниз. Кроме них есть еще и такие элементы, как флапероны. По своим характеристикам они схожи с закрылками, отклоняться эти детали могут не только в разные стороны, но и в одну и ту же.

Дополнительными элементами являются также интерцепторы. Эта деталь является плоской и располагается на поверхности крыла. Отклонение, или скорее подъем, интерцептора осуществляется прямо в поток. Из-за этого происходит увеличение торможения потока, в силу этого увеличивается давление на верхней поверхности. Это приводит к тому, что уменьшается подъемная сила именно данного крыла. Эти элементы крыла иногда еще называют органами для управления подъемной силой самолета.

Стоит сказать о том, что это довольно краткая характеристика всех элементов конструкции механизации крыла самолета. В действительности там используется намного больше разнообразных мелких деталей, элементов, которые позволяют пилотам полностью контролировать процесс посадки, взлета, самого полета и т. д.

Принцип действия


Дым показывает движение воздуха, обусловленное взаимодействием крыла с воздухом. Подъёмная сила крыла создаётся за счёт разницы давлений воздуха на нижней и верхней поверхностях. Давление же воздуха зависит от распределения скоростей воздушных потоков вблизи этих поверхностей.

Одним из распространённых объяснений принципа действия крыла является ударная модель Ньютона: частицы воздуха, сталкиваясь с нижней поверхностью крыла, стоящего под углом к потоку, упруго отскакивают вниз («скос потока»), согласно третьему закону Ньютона, толкая крыло вверх. Данная упрощённая модель учитывает закон сохранения импульса, но полностью пренебрегает обтеканием верхней поверхности крыла, вследствие чего она даёт заниженную величину подъёмной силы.

В другой распространённой, но неверной модели возникновение подъёмной силы объясняется разностью давлений на верхней и нижней сторонах профиля, возникающей согласно закону Бернулли: на нижней поверхности крыла скорость протекания воздуха оказывается ниже, чем на верхней, поэтому подъёмная сила крыла направлена снизу вверх. Обычно рассматривается крыло с плоско-выпуклым профилем: нижняя поверхность плоская, верхняя — выпуклая. Набегающий поток разделяется крылом на две части — верхнюю и нижнюю, — при этом, вследствие выпуклости крыла, верхняя часть потока должна пройти больший путь, нежели нижняя. Для обеспечения неразрывности потока скорость воздуха над крылом должна быть больше, чем под ним, из чего следует, что давление на верхней стороне профиля крыла ниже, чем на нижней; этой разностью давлений обуславливается подъёмная сила. Однако данная модель не объясняет возникновение подъёмной силы на двояковыпуклых симметричных или на вогнуто-выпуклых профилях, когда потоки сверху и снизу проходят одинаковое расстояние.

Для устранения этих недостатков Н. Е. Жуковский ввёл понятие циркуляции скорости потока; в 1904 году им была сформулирована теорема Жуковского. Циркуляция скорости позволяет учесть скос потока и получать значительно более точные результаты при расчётах.


Положение закрылков (сверху вниз): 1) Наибольшая эффективность (набор высоты, горизонтальный полёт, снижение) 2) Наибольшая площадь крыла (взлёт) 3) Наибольшая подъёмная сила, высокое сопротивление (заход на посадку) 4) Наибольшее сопротивление, уменьшенная подъёмная сила (после посадки)

Одним из главных недостатков вышеприведённых объяснений является то, что они не учитывают вязкость воздуха, то есть перенос энергии и импульса между отдельными слоями потока (что и является причиной циркуляции). Существенное влияние на крыло может оказать поверхность земли, «отражающая» возмущения потока, вызванные крылом, и возвращающая часть импульса обратно (экранный эффект).

Также в приведённых объяснениях не раскрывается механизм передачи энергии от крыла к потоку, то есть совершения работы самим крылом. Хотя верхняя часть воздушного потока действительно имеет повышенную скорость, геометрическая длина пути не имеет к этому отношения — это вызвано взаимодействием слоёв неподвижного и подвижного воздуха и верхней поверхности крыла. Поток воздуха, следующий вдоль верхней поверхности крыла, «прилипает» к ней и старается следовать вдоль этой поверхности даже после точки перегиба профиля (эффект Коанда). Благодаря поступательному движению, крыло совершает работу по разгону этой части потока. Достигнув точки отрыва у задней кромки, воздух продолжает своё движение вниз по инерции вместе с массой, отклонённой нижней поверхностью крыла, что в сумме вызывает скос потока и возникновение реактивного импульса. Вертикальная часть этого импульса и вызывает подъёмную силу, уравновешивающую силу тяжести, горизонтальная же часть уравновешивается лобовым сопротивлением.

На самом деле, обтекание крыла является очень сложным трёхмерным нелинейным, и зачастую нестационарным, процессом. Подъёмная сила крыла зависит от его площади, профиля, формы в плане, а также от угла атаки, скорости и плотности потока (числа Маха) и от целого ряда других факторов.

Предназначение механизации

Применяя такие крылья, удалось достичь сильного увеличения значения подъемной силы аппарата. Значительное увеличение этого показателя привело к тому, что сильно уменьшился пробег самолета при посадке по полосе, а также уменьшилась скорость, с которой он приземляется или взлетает. Назначение механизации крыла также в том, что она улучшила устойчивость и повысила управляемость такой большой авиамашины, как самолет. Это особенно стало заметно, когда летательный аппарат набирает высокий угол атаки. К тому же стоит сказать, что существенное снижение скорости посадки и взлета не только увеличило безопасность выполнения этих операций, но и позволило сократить затраты на строительство взлетных полос, так как появилась возможность их сокращения по длине.

Подъемная сила крыла самолета: формула

  1. Cy – это коэффициент подъемной силы крыла самолета.
  2. S – площадь крыла.
  3. Р – плотность воздуха.
  4. V – скорость потока.

Аэродинамика крыла самолета, которая оказывает влияние на него при полете, вычисляется таким выражением:

F= c ∙ q ∙ S, где:

  • C – это коэффициент формы;
  • S – площадь;
  • q – скоростной напор.

Следует отметить, что кроме крыла, подъемная сила создается при помощи других составляющих, а именно хвостового горизонтального оперения.

Те, кто интересуются авиацией, в частности ее историей, знают, что впервые самолет взлетел в 1903 году. Многих интересует вопрос: почему это случилось так поздно? По каким причинам это не случилось раньше? Все дело в том, что ученые на протяжении долгого времени недоумевали, каким образом высчитать подъемную силу и определить размер и форму крыла воздушного судна.

Если брать закон Ньютона, то подъемная сила пропорциональна углу атаки во второй степени. Из-за этого многие ученые считали, что невозможно изобрести крыло самолета малого размаха, но при этом с хорошими характеристиками. Лишь в конце IXX века братья Райт решили создать конструкцию небольшого размаха с нормальной силой подъема.


Центровка самолета

ЗАКОНЦОВКИ КРЫЛА

Законцовки крыла служат для увеличения эффективного размаха крыла, снижая лобовое сопротивление, создаваемое срывающимся с конца стреловидного крыла вихрем и, как следствие, увеличивая подъёмную силу на конце крыла. Также законцовки позволяют увеличить удлинение крыла, почти не изменяя при этом его размах.

Применение законцовок крыла позволяет улучшить топливную экономичность у самолётов, либо дальность полёта у планёров. В настоящее время одни и те же типы самолётов могут иметь разные варианты законцовок.

Вот вкратце такова механизация крыла. Именно вкратце.На самом деле эта тема намного шире.

Если хотите блеснуть эрудицией в узком кругу, знайте! у большинства современных самолетов — ОДНО крыло! А слева и справа это полуКрылья! ))

Но сегодня я итак уже слишком много занимаю Ваше внимание. Думаю, что все еще впереди

Другие статьи:

РЖД показали концепт первого российского высокоскоростного поезда (7 фото)

Роботы ушедшего столетия

Какие игрушки-роботы существовали в 80-е годы (10 фото)

10 узлов, которые пригодятся в реальной жизни (10 фото)

Другие статьи:

РЖД показали концепт первого российского высокоскоростного поезда (7 фото)

Роботы ушедшего столетия. Какие игрушки-роботы существовали в 80-е годы (10 фото)

10 узлов, которые пригодятся в реальной жизни (10 фото)

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий