Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Принцип действия и устройство турбин. Активные и реактивные принципы работы турбин
Особенности турбины как теплового двигателя
Турбина является тепловым ротационным двигателем, в котором потенциальная тепловая энергия пара (или газа) превращается в кинетическую, а последняя в свою очередь преобразуется в механическую работу вращения вала.
Пар с давлением более высоким, чем за турбиной, поступает в одно или несколько неподвижных каналов 5. В сопловых каналах пар расширяется, давление его падает, а скорость возрастает.
Из сопл пар поступает в рабочие каналы, образованные рабочими лопатками 3, закрепленными на диске 2. Двигаясь в рабочих каналах между рабочими лопатками и изменяя свое направление, поток пара оказывает силовое воздействие на рабочие лопатки. В результате чего они вращаются вместе с диском и валом 1, установленным в опорных подшипниках 4.
Комплект, состоящий из сопл и рабочих лопаток, в которых совершается процесс расширения пара, называется ступенью давления турбины. Простейшие турбины, имеющие лишь одну ступень, называются одноступенчатыми, в отличие от более сложных многоступенчатых турбин.
Тремя основными элементами, содержащимися в конструкции турбокомпрессора являются: центробежный компрессор, турбина и центральный корпус. Кинетическая энергия отработанных газов под воздействием турбины преобразуется во вращательное движение компрессора.
Также турбина соединяет турбинное колесо, помещённое в специальный корпус в форме улитки.
Поступая в улитку, отработавшие газы перемещаются по каналу и попадают на лопасти турбинного колеса. Вал, к которому приварено турбинное колесо, передаёт на колесо компрессора энергию, которая придаёт его вращению.
Лопасти турбинного колеса становятся проводниками отработавших газов, которые затем покидают турбину через отверстие в центре турбокомпрессора и выходят в выпускную систему.
От формы и размера турбины напрямую зависит производительность турбокомпрессора. Значительный прирост мощности наблюдается в турбинах большего размера, потому что они могут использовать большее давление отработавших газов. Однако в таких турбокомпрессорах, на низких оборотах, значительна вероятность возникновения турбоямы.
Аэродинамика
McDonnell Douglas DC-10 , пример Trijet конфигурации
Из-за того, как они работают, типичная скорость выхлопа реактивных двигателей является околозвуковой или более высокой, поэтому большинству реактивных самолетов необходимо летать на высоких скоростях, либо сверхзвуковых, либо скоростях чуть ниже скорости звука (” околозвуковые “), чтобы достичь эффективности. полет
Поэтому важно учитывать аэродинамику.
Реактивные самолеты обычно проектируются с использованием правила площади Уиткомба , которое гласит, что общая площадь поперечного сечения самолета в любой точке вдоль самолета от носа должна быть примерно такой же, как у тела Sears-Haack . Форма с этим свойством сводит к минимуму образование ударных волн, которые приводят к потере энергии.
Ракетные авиа двигатели
Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован. Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.
Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.
Разновидности реактивных двигателей
Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру – урана.
Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.
Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.
Системы противовоздушной обороны настолько совершенны, что обмануть простыми полетами и маневрами уже не так-то просто. В этом случае и выступает на передний план ядерный двигатель. Увы, принцип работы ядерного двигателя для крылатой ракеты недоступен и, вряд ли, когда-нибудь будет раскрыт для общественности.
Пропульсивная эффективность
В самолете общая тяговая эффективность – это эффективность в процентах, с которой энергия, содержащаяся в топливе транспортного средства, преобразуется в полезную энергию для возмещения потерь из-за сопротивления воздуха , силы тяжести и ускорения. Его также можно указать как долю механической энергии, фактически используемую для приведения в движение самолета. Оно всегда меньше 100% из-за потерь кинетической энергии на выхлопе и неидеального КПД движительного механизма, будь то пропеллер , выхлопная струя или вентилятор. Кроме того, тяговая эффективность сильно зависит от плотности воздуха и скорости полета.
η {\ displaystyle \ eta}
Математически это представлено как где – КПД цикла, а – КПД движителя. КПД цикла в процентах – это доля энергии, которая может быть получена из источника энергии, которая преобразуется двигателем в механическую энергию .
η знак равно η c η п {\ displaystyle \ eta = \ eta _ {c} \ eta _ {p}} η c {\ displaystyle \ eta _ {c}} η п {\ displaystyle \ eta _ {p}}
Зависимость тягового КПД ( ) от соотношения скорость движения транспортного средства / скорость выхлопа (v / c) для ракетных и реактивных двигателей η п {\ displaystyle \ eta _ {p}}
Для реактивного самолета тяговая эффективность (по сути, энергоэффективность ) является максимальной, когда двигатель испускает выхлопную струю со скоростью, которая равна или почти равна скорости транспортного средства. Точная формула для воздушно-реактивных двигателей, приведенная в литературе:
- η п знак равно 2 1 + c v {\ displaystyle \ eta _ {p} = {\ frac {2} {1 + {\ frac {c} {v}}}}}
где c – скорость истечения, а v – скорость самолета.
Паровые двигатели
Бурный энергетический рост реактивных двигателей и успех их применения отбросили на второй план, а то и вовсе отправили в небытие ряд направлений двигателестроения. Самолёты с паровыми двигателями распространения не получили. На заре авиации, ещё в эпоху до двигателей внутреннего сгорания, попытки подняться в воздух на паровом двигателе были малоуспешны (самолёт Можайского в 1883, паролёт «Эол» Клемана Адера в 1890). Это была эпоха «попрыгунчиков» – самолётов, которые подлетали при встречном ветре. Низкая тяговоружённость не позволяла им взлететь. В 1933 у братьев Бесслер взлетел самолёт Airspeed 2000 с паровым приводом. Самолёт летал как почтовый до 1936. Во-первых, мощность двигателя не зависела от высоты полёта и степени разрежённости воздуха – это было вечной проблемой бензиновых и дизельных двигателей. Во-вторых, самолёт был совершенно бесшумным – только свист пропеллера. Особенно была отмечена способность самолёта к реверсивному ходу и быстрому торможению. Современные паровые двигатели хотя и не нашли применения в современной авиации, но заслуживают внимания с точки зрения перспектив развития на новом витке диалектической спирали развития авиации. Их черты прослеживаются в ядерных силовых установках.
Сверхзвуковые реактивные самолеты
Единственный в истории авиастроения палубный бомбардировщик с возможностями сверхзвукового движения – самолет A-5 «Виджилент».
Сверхзвуковые истребители палубного типа – F-35 и Як-141.
В гражданской авиации был создано только два пассажирских самолета с возможностью полета на сверхзвуковых скоростях. Первый был изготовлен на территории СССР в 1968 году и обозначался как Ту-144. Было изготовлено 16 таких самолетов, но после серии катастроф машина была снята с эксплуатации.
Второй пассажирский аппарат данного типа изготовила Франция и Великобритания в 1969 году. Всего было построено 20 самолетов, эксплуатация продолжалась с 1976 по 2003 год.
Рекорды реактивных самолетов
Airbus A380 может расположить на своем борту 853 человека.
Boeing 747 на протяжении 35 лет был самым большим пассажирским самолетом с пассажировместительностью в 524 человека.
Грузовые:
Ан-225 «Мрия» – единственная машина в мире, которая обладает грузоподъемностью в 250 тонн. Первоначально был изготовлен для перевозки космической системы «Буран».
Ан-124 «Руслан» – один из самых крупных самолетов мира с грузоподъемностью в 150 тонн.
Был самым крупным грузовым самолетом до появления «Руслана», грузоподъемность равна 118 тоннам.
Максимальная скорость полета
Летательный аппарат Lockheed SR-71 достигает скорости в 3 529 км/ч. Изготовлены 32 самолета, не может произвести взлет с полными баками.
МиГ-25 – нормальная скорость полета в 3 000 км/ч, возможен разгон до 3 400 км/ч.
Будущие прототипы и разработки
Пассажирские:
Крупные:
- High Speed Civil.
- Ту-244.
Бизнес-класс:
SSBJ, Ту-444.
SAI Quiet, Aerion SBJ.
Гиперзвуковые:
Reaction Engines A2.
Управляемые лаборатории:
Quiet Spike.
Ту-144ЛЛ с двигателями от аппарата Ту-160.
Беспилотные:
- Х-51
- Х-43.
Устройство
Устроен типичный реактивный двигатель следующим образом. Основные его узлы – это:
– компрессор;
– камера для сгорания;
– турбины;
– выхлопная система.
Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.
Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.
Строение и принцип действия ПуВРД
Устройство ПуВРД
Пульсирующий воздушно-реактивный двигатель – это полый канал, открытый с двух сторон. С одной стороны – на входе – установлен воздухозаборник, за ним – тяговый узел с клапанами, дальше расположена одна или несколько камер сгорания и сопло, через которое выходит реактивный поток. Поскольку работа двигателя циклична, можно выделить основные ее такты:
- такт впуска, во время которого входной клапан открывается, и в камеру сгорания под действием разряжения в ней попадает воздух. В это же время через форсунки впрыскивается топливо, в результате чего образуется топливный заряд;
- полученный топливный заряд воспламеняется от искры свечи зажигания, в процессе горения образуются газы с высоким давлением, под действием которого закрывается впускной клапан;
- при закрытом клапане продукты сгорания выходят через сопло, обеспечивая реактивную тягу. Вместе с тем в камере сгорания при выходе отработанных газов образуется разряжение, входной клапан автоматически открывается и впускает во внутрь новую порцию воздуха.
Входной клапан двигателя может иметь разные конструкции и внешний вид. Как вариант, он может быть выполнен в виде жалюзи – прямоугольных пластин, закрепленных на раме, которые под действием перепада давления открываются и закрываются. Другая конструкция имеет форму цветка с металлическими «лепестками», расположенными по кругу. Первый вариант более эффективный, зато второй более компактный и может использоваться на небольших по размеру конструкциях, например, при авиамоделизме.
Подача топлива осуществляется форсунками, которые имеют обратный клапан. Когда давление в камере сгорания снижается, подается порция топлива, когда же давление увеличивается за счет горения и расширения газов, подача топлива прекращается. В некоторых случаях, например на маломощных моторах от авиамоделей, форсунок может и не быть, а система подачи топлива при этом напоминает карбюраторный двигатель.
Свеча зажигания расположена в камере сгорания. Она создает серию разрядов, и когда концентрация топлива в смеси достигает нужного значения, топливный заряд воспламеняется. Поскольку двигатель имеет небольшие размеры, его стенки, выполненные из стали, в процессе работы быстро нагреваются и могут поджигать топливную смесь не хуже свечи.
Нетрудно понять, что для запуска ПуВРД нужен первоначальный «толчок», при котором первая порция воздуха попадет в камеру сгорания, то есть такие двигатели нуждаются в предварительном разгоне.
Конструкция
Основная статья: Конструкция самолёта
Основные элементы летательного аппарата:
- Крыло — создаёт при поступательном движении самолёта необходимую для полёта подъёмную силу за счёт возникающей в набегающем потоке воздуха разницы давлений на нижнюю и верхнюю поверхности крыла: давление на нижнюю поверхность самолётного крыла больше, чем давление на верхнюю его поверхность. На крыле располагаются аэродинамические органы управления (элероны, элевоны и др.), а также механизация крыла — то есть устройства, служащие для управления подъёмной силой и сопротивлением самолёта (закрылки, интерцепторы и др.).
- Фюзеляж — предназначен для размещения экипажа, пассажиров, грузов и оборудования, а также для крепления крыла, оперения, шасси, двигателей и т. п. (является как бы «телом» самолёта). Известны самолёты без фюзеляжа (например — «летающее крыло»).
- Оперение — аэродинамические поверхности, предназначенные для обеспечения устойчивости, управляемости и балансировки самолёта. Для управления самолётом на оперении располагают отклоняемые поверхности — аэродинамические рули (руль высоты, руль направления), или же делают поверхности оперения цельноповоротными (на многих сверхзвуковых самолётах).
- Шасси — система опор, необходимых для разбега самолёта при взлёте, пробега при посадке, а также передвижения и стоянки его на земле. Наибольшее распространение имеет колёсное шасси. Также известны конструкции шасси с лыжами, поплавками, полозьями. В СССР осуществлялись эксперименты с гусеничным шасси и шасси на воздушной подушке. Многие современные самолёты, в частности большинство самолётов военного назначения, а также пассажирских самолётов, имеют убираемое шасси.
- Силовая установка самолёта, состоящая из двигателя и движителя (например, воздушного винта), а также систем, обеспечивающих их работу — создаёт необходимую тягу, которая, уравновешивая аэродинамическое сопротивление, обеспечивает самолёту поступательное движение.
- Системы бортового оборудования — различное оборудование, которое позволяет выполнять полёты при любых условиях. Приблизительно последние 30-40 лет бортовая электроника является наиболее умным, сложным и дорогостоящим оборудованием, превосходящим по стоимости всю остальную конструкцию самолёта.
Ильюшин Ил-96
Яковлев МС 21
Сухой Суперджет 100
Как работает реактивный двигатель?
Его приводит в действие реактивная тяга. Для этого нужна какая-то жидкость, выталкиваемая из задней части системы и придающая ей движение вперед. Здесь работает третий закон Ньютона, который гласит: “Любое действие вызывает равное противодействие”.
У реактивного двигателя вместо жидкости применяется воздух. Он создает силу, обеспечивающую движение.
Если говорить об устройстве двигателя реактивного самолета, то оно представляет из себя соединение четырех самых важных деталей:
- компрессора;
- камеры горения;
- турбины;
- выхлопа.
Компрессор состоит из нескольких турбин, которые засасывают воздух и сжимают его по мере прохождения через расположенные под углом лопасти. При сжатии температура и давление воздуха повышаются. Часть сжатого воздуха попадает в камеру горения, где смешивается с топливом и поджигается. Это увеличивает тепловую энергию воздуха.
Реактивный двигатель.
Горячая смесь на высокой скорости выходит из камеры и расширяется. Там она проходит через еще одну турбину с лопастями, которые вращаются, благодаря энергии газа.
Турбина соединена с компрессором в передней части двигателя, и таким образом приводит его в движение. Горячий воздух выходит через выхлоп. К этому моменту температура смеси очень высока. И еще увеличивается, благодаря эффекту Дросселирования. После этого воздух выходит из него.
Двигатель сверхзвукового самолета — тоже реактивный, но уже в совершенно другой модификации.
Реактивный двигатель: принцип действия и типы
Двигатель, в котором создается сила тяги за счет преобразования внутренней энергии топлива в кинетическую энергию рабочего тела, называется реактивным.
Рабочее тело с большой скоростью выходит из сопла, сообщая ему реактивную силу, направленную в противоположную сторону. Действуя согласно закону сохранения импульса, продукт сгорания топлива и двигатель перемещаются относительно друг друга в противоположных направлениях.
Если надуть воздушный шарик и, не завязывая, отпустить его, то получится простейший реактивный двигатель. Рабочее тело – накачанный в шарик воздух – будет вырываться наружу, заставляя шарик перемещаться в противоположном направлении.
Для работы реактивного двигателя нужны составляющие:
- Топливо.
- Камера сгорания (реактор), в которой внутренняя энергия топлива преобразуется в тепловую энергию рабочего тела.
- Сопла, из которых под давлением вырываются наружу продукты сгорания топлива, сообщая двигателю реактивную тягу.
Бывает двух типов:
- Воздушно-реактивный – тепловая энергия образуется при сгорании топлива в присутствии кислорода.
- Ракетный – работающий в безвоздушном пространстве.
Устройство и принцип работы турбокомпрессора
Турбокомпрессор (турбина) — механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.
Конструкция и принцип работы турбины
Устройство турбокомпрессора
Классический турбокомпрессор состоит из следующих элементов:
- Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
- Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
- Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
- Вал турбины (ось) — соединяет турбинное и компрессорное колеса.
- Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
- Перепускной клапан — предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.
Принцип работы турбокомпрессора
Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:
- Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
- Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
- Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
- Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.
Особенности эксплуатации турбин
В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации.
Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.
С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях.
Кто придумал реактивный двигатель
Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости в 1903 году российский ученый К. Э. Циолковский в своем труде “Исследование мировых пространств реактивными приборами”. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Константину Эдуардовичу потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.
Сейчас много говорят о первенстве в этом вопросе одного из цареубийц Александра 2, революционера Кибальчича. Хотя его завещание и датировались 1881 годом, но к моменту выхода работы Константина Эдуардовича еще было погребено в тюремных архивах. К тому же это были лишь наброски, тогда как ученый сумел подвести надежный грунт под теорию уже в своих ранних работах.
История развития авиадвигателей
Первый самолет, который запустили братья Райт, имел двигатель с 4-мя цилиндрами. Конечно же, это значительно более простая конструкция, чем те, которые используются сейчас. И, как отмечают эксперты, без эволюции самолетного двигателя было бы невозможно развитие авиаотрасли вообще – примитивные первые моторы просто бы не потянули огромные и мощные машины, летающие сегодня.
Первый авиационный двигатель создал Джон Стрингфеллоу – он считается изобретателем специального двигателя на пару, предназначенный для неуправляемой модели. Но, как показала практика, паровые двигатели не подошли для авиации – они оказались чрезмерно тяжелыми.
C 1903 года началась, как назвали ее эксперты и аналитики, настоящая война моторов. Чарльз Тэйлор поставил на лайнер братьев Райт двигатель, так называемой рядной конструкции – в нем цилиндры находятся один за другим. Есть здесь аналогия с простым автомотором.
Цилиндры в ряд не давали двигателю необходимой мощности, которая требовалась для самолетов. В 1906 году появился двигатель, где цилиндры разместились под прямым углом друг к другу. Также такой вариант мотора имел впрыск. Далее промышленность развивалась, прием достаточно активно. Вследствие этого авиаотрасль имеет современные и мощные моторы.
Преимущества реактивного двигателя
Перед остальными видами такие:
- Простота конструкции. Для создания простейшего реактивного двигателя достаточно камеры сгорания и сопла. В камере сгорания образуется рабочее тело с высокой тепловой энергией, которое проходя через сопло передает аппарату реактивную тягу.
- Малое количество подвижных деталей. Для повышения эффективности работы воздушно-реактивного двигателя, созданы дополнительные механизмы. Они обеспечивают принудительное нагнетание воздуха в камеру сгорания. Их конструкция проста. Обычно это воздухозаборник с крутящимся винтом и лопастями. У ракетного таковые отсутствуют вообще.
- Высокие удельный импульс и мощность. Удельный импульс характеризует насколько большое ускорение передается самолёту или ракете рабочим телом, что позволяет развить хорошую скорость полета. Сравнение мощностей различных типов двигателей наглядно демонстрирует преимущества реактивного: карбюраторный ДВС – 200 кВт; дизельный ДВС – 2200 кВТ.; атомный – 55 000 кВт; турбинный паровой — 300 000 кВт; реактивный – 30 000 000 кВт.
- КПД достигает 47-60%. Этот показатель гораздо выше, чем у двигателей внутреннего сгорания (25-35%) или турбинного (27-30%). Это значит, что реактивный совершает больше полезной работы.
- Управляемость с помощью тяги во время космических полетов. Меняя расход топлива, можно уменьшать или увеличивать скорость полета, делать манёвры и вовсе отключать двигатель, а затем снова его запускать. При этом ему не требуется взаимодействовать с другими телами.
- Работает при низком давлении воздуха или вовсе без него в условиях безвоздушного пространства. Пока ещё не создан механизм, который зарекомендовал себя лучше в условиях космоса.
Что такое самолет с атомным двигателем?
Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.
Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.
Комбинированный турбреактивно-атомный двигатель.
В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.
В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:
- безопасность летчиков во время полета;
- выброс радиоактивных частиц в атмосферу;
- в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.
Что такое самолет с атомным двигателем?
Во время Холодной войны были предприняты попытки создания реактивного двигателя не на химической реакции, а на тепле, который бы вырабатывал ядерный реактор. Его ставили вместо камеры сгорания.
Воздух проходит через активную зону реактора, понижая его температуру и повышая свою. Он расширяется и истекает из сопла со скоростью, большей чем скорость полета.
Комбинированный турбреактивно-атомный двигатель.
В СССР проводились его испытания на базе ТУ-95. В США тоже не отставали от ученых в Советском Союзе.
В 60х годах исследования в обеих сторонах постепенно прекратились. Основными тремя проблемами, которые помешали разработке, стали:
- безопасность летчиков во время полета;
- выброс радиоактивных частиц в атмосферу;
- в случае падения самолета, радиоактивный реактор может взорваться, нанеся непоправимый вред всему живому.
Подведем итоги
Реактивный двигатель — это мощный механизм, без которого не может обойтись современные самолётостроение и ракетостроение. Он заставил летать самолёты в 1,5 раза быстрее и выше, чем поршневой мотор. Его сила тяги не зависит от наличия окружающей среды, точки опоры или иного тела.
Конструкция позволяет управлять ракетами в безвоздушном пространстве. Это делает его крайне необходимым для исследования космоса.
Чем выше его скорость летательного аппарата, тем большую полезную работу совершает двигатель. При меньшей скорости – полезная работа меньше.
Реактивный двигатель внедряют в автомобилестроении, строительстве поездов, для гоночных болидов, снегоуборочных машин, ледоколов. создала мотоцикл с газореактивным мотором.
Источник